Scientific Visualization 101 Vislt: An Introductory Hands-On Workshop

KAUST Visualization Core Lab

James Kress

Workshop Site: <u>wiki.vis.kaust.edu.sa/training</u> Install VisIt 3.3.0 or newer: <u>https://visit-dav.github.io/visit-website/releases-as-tables/#latest</u>

September 28, 2023

Resources

Presenter/KVL Contact Info:

- James Kress: james.kress@kaust.edu.sa
- KVL website: wiki.vis.kaust.edu.sa
- General Inquiries: <u>help@vis.kaust.edu.sa</u>

User Resources:

- Main website: <u>http://www.llnl.gov/visit</u>
- Discussions: <u>https://github.com/visit-dav/visit/discussions</u>
- User Guide: <u>https://visit-sphinx-github-</u> <u>user-manual.readthedocs.io/en/develop/</u>
- Wiki: <u>http://www.visitusers.org</u>

Developer Resources:

• Github: <u>https://github.com/visit-dav/visit</u>

Visualization Core Lab

Overview of Facilities & Services

The Team

Dr. Sohaib Ghani (LEAD STAFF SCIENTIST)

• VISUAL ANALYTICS

• INFORMATION VIS

• STATISTICAL ANALYSIS

Thomas Theussl SCIVIS	Dr. James Kress HPC SCIVIS	Dr. Ronell Sicat VR/AR	Dr. Didier Barradas Data Scientist	Dr. Abdelghafour Halimi Data Scientist
 SCIENTIFIC VISUALIZATION LARGE DATA ANALYSIS DISTRIBUTED VISUALIZATION 	 VISUALIZATION SOFTWARE HPC INSITU VISUALIZATION DISTRIBUTED VISUALIZATION 	 SCIENTIFIC VISUALIZATION VR DEVELOPMENT 3D RECONSTRUCTION 	 DATA SCIENCE MACHINE LEARNING DEEP LEARNING 	Data ScienceMachine LearningDeep Learning

FACILITIES AND SPACES

ZONE 1/2 DISPLAY WALLS: 2D/3D Analytics

HMD's

CUBES VR

ZONE 5 VR

King Abdullah University of Science and Technolog

MULTI-PURPOSE ROOM

Z2 Visualization and Collaboration

- ParaView & Vislt on Z2
 - Connect to Ibex for compute or other networked storage

Sage3 collaboration boards

- Software to enable teams of collaborators to work together with data in the form of data visualizations
- <u>https://sage3.sagecommons.org/</u>

Accessing KVL Facilities

- Book here (requires Portal Credentials):
 - <u>https://wiki.vis.kaust.edu.sa/booking</u>

Facili	ity Booking Form	1	
	Once you click Send Request	t you can refresh this page to see your booking appear in the bookings calendar . All bookings are provisional until approved by KVL.	
		Vis Lab Home Booking Hosts 188 Logged in as kressjm	
		Logged in as kressjm.	
		Purpose Description of booking	
		Reservation Maintenance Cornea MPR Vis Cubes Vive Zone 1 Zone 2 Zone 5 Every 0 weeks Full day Start 2023-07-27 11:36 Image: Cornea 1 Zone 2 Zone 5	

Collaborating with KVL

- Standard Request
 - Load data 'X' in program 'P' to produce a visualization 'V'
- Advanced Support
 - Investigative visualization
 - Asking "why?" & "what?" of your data
- Collaboration
 - Work with you through your research and discovery cycle

Upcoming Training Events

Scientific Visualization Workshop Series Fall 2023

Date	Training Event	Speaker	Registration
Sunday October 1, 2023	Scientific Visualization 101: Vislt ~ An Introductory Hands-On Workshop	James Kress	S Register Now
Sunday October 8 2023	Scientific Visualization 210: ParaView & Vislt ~ Scripting and Supercomputing Workflows	James Kress & Thomas Theußl	S Register Now
Sunday October 22, 2023	Scientific Visualization 101: Avizo/Amira ~ An Introductory Hands-On Workshop	Thomas Theußl	S Register Now
Sunday October 29, 2023	Scientific Visualization 210: ParaView ~ A Plugin for Geometry Processing	Thomas Theußl	S Register Now
Sunday November 5, 2023	Scientific Visualization 210: Avizo and Ilastik for Image Segmentation and 3D Analysis	Ronell Sicat	S Register Now

Hands-on AI Tools and Techniques Workshop Series Fall 2023

Date	Training Event	Speaker	Registration
Tuesday October 3, 2023	Introduction to Machine Learning	Abdelghafour Halimi	S Register Now
Tuesday October 10, 2023	Introduction to Deep Learning	Abdelghafour Halimi	S Register Now
Tuesday October 17, 2023	Data Visualization for Data Science	Abdelghafour Halimi	S Register Now

Edit

Data Science on Kaust HPC platforms Fall 2023

Date	Training Event	Speaker	Registration
Sunday November 20, 2023	S Data Science on-boarding on KSL platforms	DB & MS	S Register Now
Tuesday November 21, 2023	S Distributed Deep Learning on KSL platforms	DB & MS	S Register Now
Sunday November 22, 2023	S High Throughput Hyperparameter Optimization of ML/DL models on KSL platforms	DB & MS	S Register Now
Sunday November 23, 2023	S Introduction to Containers on KSL platforms	DB & MS & AH	S Register Now

Workshop Goals

- Hands-on learning with Vislt
 - Introductory course
 - Slides / demonstrations
- Why Vislt @ KAUST
 - Open source, scalable, multi-platform visualization application with users worldwide
 - Available on all major computation resources at KAUST
 - VisIt on Ibex and Shaheen
 - Support for distributed computations to process very large data sets
 - Vislt has been proven on up to 27 billion element meshes
 - Vislt on IT Remote Workstations
 - Vislt @ KVL
 - Tiled-display walls

Vislt Basics

September 28, 2023

11

What is Vislt?

- Open source turnkey application for data analysis and visualization of meshbased data
- Infrastructure for parallel post-processing that scales from laptops to HPC clusters
- Built-in in situ capabilities

Vislt Supports a Wide Range of Use Cases

Point: <0.58807, 8.09064, 0.146425>

64725 64726 64775 64776

(62225) = 14.2915(62226) = 14.0149

Incident Nodes: 62225 62226 62275 62276

Zone: 59805

radial: <nodal>

Visual Debugging

Comparative Analysis

Vislt Supports a Wide Range of Plotting Types

Streamlines / Pathlines

Volume Rendering

Vector / Tensor Glyphs

Molecular Visualization

Pseudocolor Rendering

Parallel Coordinates

How Do I Obtain Vislt?

- Use an existing build:
 - For your Laptop or Workstation:
 - Binaries for Windows, OSX, and Linux (RHEL + Ubuntu): (<u>https://visit-dav.github.io/visit-website/releases-as-tables/#latest</u>)
 - KVL team manages builds on Ibex and Shaheen
 - IT Remote Workstations
- Build Vislt yourself:
 - "build_visit" is a script that automates the process of building VisIt and its third-party dependencies. (docs: <u>https://visit-sphinx-github-user-</u> <u>manual.readthedocs.io/en/develop/building_visit/index.html</u>)

How Do I Get My Data Into Vislt?

Vislt supports more than 110 file formats

- VTK, Silo, Xdmf, PVTK
- The PlainText database reader can read simple text files (CSV, etc)
 - <u>https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/data_into_visit/PlainTextFormat.html</u>
- visit_writer utility: code to write VTK files from your sim code
 - <u>https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/data_into_visit/VTKFormat.html</u>
- Support for Mesh-based data in Conduit Blueprint:
 - <u>http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html</u>

Read the docs: <u>https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/data_into_visit/index.html</u>

Visualization Techniques

For Mesh Based Simulations

Pseudocolor rendering of Elevation

Pseudocolor rendering of Density

September 28, 2023

Volume Rendering

cast rays though data and applies transfer functions to produce an image

Film/Image

Isosurfacing (Contouring)

extracts surfaces of that represent level sets of field values

King Abdullah University of Science and

the foundation of several flow visualization techniques

This is an ordinary differential equation.

S(t) = position of particle at time t

- $S(t_0) = p_0$
 - t₀: initial time
 - p₀: initial position

Particle advection

- S'(t) = v(t, S(t))
 - v(t, p): velocity at time t and position p
 - S'(t): derivative of the integral curve at time t

Streamline and Pathline

built on particle advection

- Streamlines Instantaneous paths
- Pathlines Time dependent paths

Meshes discretize continuous space

- Simulations use a wide range of mesh types, defined in terms of:
 - A set of coordinates ("nodes" / "points" / "vertices")
 - A collection of "zones" / "cells" / "elements" on the coordinate set

Vislt uses the "Zone" and "Node" nomenclature throughout its interface.

September 28, 2023

King Abdullah University of Science and Technology

and Technology

variables associated with the mesh that hold simulation state

- Field values are associated with the zones or nodes of a mesh
 - Nodal: Linearly interpolated between the nodes of a zone
 - Zonal: Piecewise Constant across a zone

Mesh fields

• Field values for each zone or node can be scalar, or multi-valued (vectors, tensors, etc.)

Domain decomposed meshes

enable scalable parallel visualization and analysis algorithms

- Simulation meshes may be composed of smaller mesh "blocks" or "domains"
- Domains are partitioned across MPI tasks for processing

Adaptive Mesh Refinement (AMR)

refines meshes into patches that capture details across length scales

- Mesh domains are associated with patches and levels
- Patches are nested to form a AMR hierarchy

Vislt Interface Tour

Vislt GUI Tour

- Opening files / file types
- View file info
- Navigating views
- Multiple views
- Window tools
- Add plot / add operator
- Change plot / operator attributes
- Selectively applying operators
- Link views

Hands–On Session 1

Basic Plots / Slices / Volume Rendering

Data Set

- Skull data set
 - skull.vti

0

ontou /ar: ImageFile

> 231.8 208.6 85 5 62.3

> > 15.9 9.55

46.36

- 23.18 Max: 255.0 Min: 0.000

50

• VTK image data format

100

X-Axis

150

200

50

150 **Y-Axis**00

200

Volumq 250 Var: ImageFile 255.0

191.2

127.5

63.75

0.000 Max: 255.0 Min: 0.000

Ζ

Z-Axis

250

200

150

100

Y-Axis

0 50100

100 X150 xis

Hands–On Session 2

Screenshots / Movies / Animations / Custom Expressions / Queries / Saving Vislt State

Screenshots / Movies

Save Window / Save Options

Animation / Keyframing

Animation Time Slider

	Keyframe editor
	Keyframe Editor - 🗆 😣
umber of frames	100
Keyframing enabled	
ttributes Current frame View noise.silo Contour(hardy State Attributes	Keyframes
Add view keyframe Add state keyframe Apply	 ✓ Use view keyframes Post Dismiss

DB: noise.silo Cycle: 0 Contour Var: hardyglobal Units: Joules 5.018 4.582 4.146 3.711 3.275 2.839 2.403 1.967 1.531 Max: 5.890 Min: 1.096 Height (parsec) 1010 -5 ⁰Width (parsec) 10 user: kressjm Thu Jun 30 09:25:24 2022

Resulting Movie

September 28, 2023

September 28, 2023

Custom Expressions / Save Session

Vector Plots / Streamlines

September 28, 2023

Vislt Wrap-up

Best Practices

Best Practices

How do I use ParaView or VisIt?

- If your data is small/manageable
 - Do your visualizations on your laptop, desktop, or IT Remote Workstation
- If your data is medium/large
 - Do interactive visualization on Ibex
 - Run it on your local machine and connect directly to Ibex to load/process/visualize
 - <u>https://gitlab.kaust.edu.sa/kvl/KAUST_Visualization_Vignettes/-/tree/master/ParaView_Vignettes#using-paraview-interactively-on-ibex</u>
 - <u>https://gitlab.kaust.edu.sa/kvl/KAUST_Visualization_Vignettes/-/tree/master/VisIt_Vignettes#using-visit-interactively-on-ibex</u>
- If your data is large/huge and you have a defined workflow
 - Do batch visualization on Shaheen
 - <u>https://gitlab.kaust.edu.sa/kvl/KAUST_Visualization_Vignettes/-/tree/master/VisIt_Vignettes#expy</u>
 - <u>https://gitlab.kaust.edu.sa/kvl/KAUST_Visualization_Vignettes/-/tree/master/ParaView_Vignettes#expy</u>
- If you have repeatable repetitive tasks
 - Do scripted or batch visualization

Thanks!

Contacts:

james.kress@kaust.edu.sa

help@vis.kaust.edu